Energy

Energy

To assist designers in their search for the right balance between human comfort, well-being and energy-efficiency in a given climate, new calculation methods and design support approaches are being developed at LIPID. We see development of fast building performance simulation (BPS) systems as an important step towards greater integration of quantitative performance evaluations in the design process. At the same time we have been keeping a close eye on uncertainties that plague energy performance evaluations carried out using BPS tools to make them robust and close the performance gap. Our work is enriched by active tool development and interface with design practitioners.

An integrative approach for embodied energy: Towards an LCA-based data-driven design method

T. Jusselme; E. Rey; M. Andersen

Renewable and Sustainable Energy Reviews. 2018-02-27. Vol. 88, p. 123-132.

DOI : 10.1016/j.rser.2018.02.036.

The built environment is one of the major contributors of greenhouse gas (GHG) emissions. To tackle climate change, global targets have been set for this sector. Although life-cycle assessment (LCA) methods are typically used to evaluate a building project's embodied energy in its final stages of development, this evaluation would be especially valuable at early design stages, when the opportunity to modify the design is greatest. In this paper, an extensive review of methods to improve the usability of LCA at the early design stage is presented. Three major issues regarding the application of LCA arose from this analysis at this stage: its time consumption, the lack of design details, and the non-reproducibility of results. Moreover, LCA makes it possible to assess environmental performance, but does not provide design alternatives, which are crucial to introduce environmental targets into an iterative design process. To that end, existing techniques that can address the major LCA issues were identified, together with their respective limits. These include some promising tools that provide and explore design alternatives and their respective environmental performances. Among these tools are exploration methods, which have not been applied to LCA insofar as it is not possible to do so in a reasonable computational time. To bridge this gap, the paper outlines the structure of an LCA-based data-driven design method, which uses a combination of LCA, parametric analysis, data visualization, sensitivity analysis, and target cascading techniques.

Robustesse de l'évaluation du potentiel solaire de formes urbaines différenciées

G. Peronato; P. Rastogi; M. Andersen

Suburban polarity; Lausannes: Presses Polytechniques et Universitaires Romandes (PPUR), 2017. p. 141-150. - 978-2-88915-215-5.

Le potentiel solaire a une importance primordiale dans la performance énergétique des bâtiments, car le soleil est normalement la principale source d’énergie renouvelable à disposition en milieu urbain. Pourtant, le potentiel solaire n’a pas une définition univoque. Comme nous l’avons déjà vu dans les précédents ouvrages de cette série, il est possible d’opérer une première distinction entre potentiel solaire actif et passif. Le premier se décline en potentiel solaire actif pour systèmes thermiques (production d’eau chaude) et pour systèmes photovoltaïques (production d’électricité). Dans le deuxième, on peut distinguer le potentiel solaire passif pour le chauffage de l’espace intérieur à travers les gains solaires, et l’éclairage à travers la lumière naturelle. Dans la présente étude, nous allons examiner l’irradiation annuelle sur les surfaces des bâtiments, que l’on peut considérer comme un premier indicateur du potentiel solaire actif, sans compter les pertes dues à la transformation en chaleur ou en électricité. Une évaluation du potentiel solaire dès les premières phases du projet, c’est-à-dire lorsque l’on aborde la question de la forme urbaine, permet une intégration plus efficace des critères de performance énergétique. En effet, très souvent, ces questions ne sont abordées que dans les phases avancées du projet, lorsqu’il est plus difficile d’effectuer des changements significatifs sur le projet. Cette étude s’inscrit donc dans une démarche d’évaluation précoce du potentiel solaire de différentes formes urbaines. Les visions urbaines développées par les étudiants de l’atelier du Prof. Emmanuel Rey pour le site de Crissier et présentées dans cet ouvrage se prêtent particulièrement bien à cet exercice d’analyse comparative, car elles présentent des formes urbaines très différenciées. Nous allons donc essayer de vérifier si certaines d’entre elles ont une meilleure exposition au soleil.

n/a

Sensitivity analysis of visual and thermal parameters for energy savings: combining illuminance and temperature set-points for possible trade-offs

G. Chinazzo; M. Plourde; J. Pereira; J. Wienold; M. Andersen

2017. Building Simulation 2017 , San Francisco, California, USA , August 7-9 2017.

This study presents a methodology for evaluating the effects of simultaneous temperature and illuminance set-point variations on energy consumption. Different illuminance levels are achieved with an innovative dynamic shading control algorithm that allows keeping constant values of maximum workplane illuminance. Findings from applying the methodology to a specific office-like workplace located in Switzerland show that the new shading control algorithm leads to lower cooling energy consumption in comparison with a standard shading control system (i.e., based on maximum irradiance) for constant 300 and 500 lux indoor illuminance thresholds. Moreover, multiple combinations of temperature and illuminance levels result in similar cooling consumption values, implying that trade-offs between those two parameters are possible to achieve energy savings.

n/a

In-progress PhD theses

List of publications

Giuseppe Peronato

Advisors: Marilyne Andersen and Emmanuel Rey

Project duration: 2014 – 2018

Funding: Swiss National Science Foundation – National Research Project NRP 70 “Energy Turnaround”

Areas of focus: Energy